PERFORMANCE OF A SCALABLE BITSTREAM ADAPTATION PROCESS BASED ON
HIGH LEVEL XML DESCRIPTIONS

Davy De Schrijver, Wim Van Lancker, and Rik Van de Walle

Ghent University — IBBT, Department of Electronics and Information Systems — Multimedia Lab,
Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium.
e-mail: {davy.deschrijver;wim.vanlancker;rik.vandewalle } @ugent.be

ABSTRACT

Multi-channel publication environments are necessary in
our future universal multimedia access world. Therefore,
we must adapt our digital video content taking the
restrictions and characteristics of networks and terminals
into consideration. To make the adaptation possible in a
flexible manner, we use a scalable bitstream which gives
us the possibility to extract new bitstreams with other
characteristics without the need of a complete decode-
encode step. The adaptation must happen in a format-
agnostic way and terminal-independent. To realize this
goal, we describe our bitstream in XML by using the
MPEG-21 BSDL standard. The adaptation is done in the
XML domain instead of on the bitstream. The generation
of the description and the new bitstream can take place
automatically. In this paper, we describe the adaptation of
a bitstream by using a description and the performance of
this approach of adaptation.

1. INTRODUCTION

Nowadays, video plays an important role in our society
(television, DVD, internet...) and will be more important
in the future (thinking of possibilities of PDA, GSM...).
Every video sequence must be encoded to make it
possible to transport the video over a network, for
example, digital television contains MPEG-2 encoded
video sequences. The increasing amount of possible
devices leads to a universal multimedia access where we
want to create the content once and publish it on every
possible device [1].

To publish the content on different devices and over
different networks, containing dissimilar characteristics,
the original (encoded) bitstream must be adapted. The
adaptation can be done directly on the bitstream itself but
in this paper, we will use a different approach. We
describe the syntax of the bitstream in XML and do the
adaptation in the XML domain. This gives us the
opportunity to add extra information (metadata) to the
(XML) description about the video sequence such as shot

detection, semantic meaning of a scene... and to perform
the adaptation based on the metadata.

The outline of the paper is as follows. First in
section 2, we briefly discuss the generation of a bitstream
description. Next in section 3, we explain a mathematical
model, which predicts the generation time of an adapted
bitstream. In section 4, we investigate the possible
solutions for the XML transformations in the context of
BSDL. The results of our experiments are summarized in
section 5. Finally, section 6 concludes the paper.

2. HIGH-LEVEL DESCRIPTION OF A
SCALABLE BITSTREAM

To enable the publication of content on heterogeneous
devices utilizing different network characteristics, it is
impractical to create content for every possible client
configuration (such as screen resolution, bandwidth...).
Therefore, we need a scalable bitstream, which gives us
the possibility to keep only one parent bitstream and filter
out different versions of the bitstream taken the enforced
constraints into account.

Therefore, we have chosen to encode our video with
the MC_EZBC algorithm [2]. This codec is wavelet-
based and embedded scalable in quality, resolution and
frame rate. To obtain these kinds of scalability, the codec
uses a t+2D wavelet transform. This kind of codec
consists of three phases (in contrast to the traditional two-
step, encode-decode codecs). During the first phase, the
codec encodes the video sequence and generates a near-
lossless bitstream. From this bitstream, it is possible to
extract other versions of the original bitstream during the
second phase. These versions will have other
characteristics like lower frame or bit rate. The last phase
is typically the decode step of a bitstream.

Another important issue for this paper is that the
adaptation could take place in every node of the delivery
chain such as on the server; in a gateway or in an active
router. Therefore, we need a universal adaptation
engine and we will use the Digital Iltem Adaptation (DIA,
[3]) part of the MPEG-21 framework [4]. To make the
adaptation process format-agnostic (or format-
independent), we describe the bitstream structure on a

" Original | il . " XML Bitstream

| Bitstream | ‘*-»._Eﬂt_o?ie-/ | Description
G,
Schema \H%______,/"J

— —

iy
V—
Bitstream \RBSDtOBIrL_ i

Adapted Bitstream
Description

Figure 1: BSDL Workflow

higher level in XML (Extensible Markup Language)
using BSDL (Bitstream Syntax Description Language,
[5]) which is a part of DIA. BSDL is a language that is
based on the W3C XML Schema language with some
extensions to and restrictions on the W3C standard. In
Figure 1, we see the workflow of the BSDL language. In
this figure, we generate an XML description of a
bitstream by using the BintoBSD tool. The original
bitstream is embedded scalable and a BSDL schema
represents the structure or syntax of the encoded
bitstream. The generation can be done automatically. On
these descriptions, a transformation can be executed to
obtain the adapted descriptions. The transformation can
be done by using an XSLT stylesheet, DOM or SAX
parser. The transformation is the XML-equivalent
adaptation step of the original bitstream. The last step in
the BSDL workflow is the generation of the adapted
bitstream from the adapted bitstream description. To
make this generation possible in an automated way, we
need the description together with the BSDL schema and
the original bitstream. The BSDL schema is necessary to
understand the syntactical meaning of the different tags in
the description and the original bitstream is required
during this process because the description contains
references to this bitstream.

To make this approach practically usable, it is
necessary to perform the adaptation of the description
together with the generation of the (adapted) bitstream in
real time. In the following sections, we will discuss the
performance of the different steps.

3. MATHEMATICAL MODEL OF THE
BITSTREAM GENERATION

The last step in the BSDL approach is the generation of
the new bitstream from a description. The first place to
adapt the bitstream is in most cases the (content) server
because the (original) parent near-lossless bitstream will
be too big to send over a network. So, it is necessary to
predict the execution time of the BSDtoBin tool to avoid

— Header Contant
Level 1
| Number of GOPs |
Content
— GOPSIZE GOP Headar Levei 2
[Gor| Content Mation
—_ Level 3 Victors
— GoP
— Content | |
GOP Level 4
H ‘GOP content I
— Substream
— GOP
Content
Level n

Figure 2: Structure of a bitstream description

server overloading. A mathematical model can be used as
predictor of the execution time.

In Figure 2, we see the general structure of a
bitstream description that is used as input document for
the BSDtoBin tool. We must remark that the header and
subband elements contain metadata about the bit planes
of the encoded sequence. This is necessary to make the
SNR scalability possible and is not encapsulated in the
bitstream. The bitstream generator (BSDtoBin tool) must
parse that kind of descriptions and the execution time of
the generation depends on the sequence characteristics
(such as number of frames, length of GOP structures,
frame resolution...) and terminal properties (such as CPU
speed, hard disk, available memory...). Our model must
be sequence and terminal independent so that it is usable
on every possible device and for every (MC_EZBC
encoded) video sequence. In our model, the terminal
characteristics are called the parameters of the model and
the sequence properties are called the variables.

Suppose, as parameters:
a = number of temporal levels
b = number of spatial levels
¢ = number of GOP structures
d = number of bitplanes
and as variables:
u = constant startup time
v = time to parse a subband
w = time to parse a motion vector
X = time to parse a GOP header
y = time to parse the metadata
then the model is:

Total execution time = u + parse BSD + 10

C
=u+ 2
5=

(parse GOP) + 10
| s
a-1
GOPHeader + Y, contentlevel + 10
1 S or=0 "s

I
<
+
Mo

a-1
x +contlevel + 2 (M V + subbands) +10
s=1 s r=0 r r

Sequence | # frames | resolution | Size bitstream | XSLT Java — Java — CH++ - C++ -
(KB) (s) DOM (s) | SAX (s) | DOM (s) SAX (s)
Seq 1 40 352 x 240 2425 155.7 1.8 0.6 0.5 0.4
Seq 2 121 352 x 288 6474 844.0 4.8 1.6 1.4 1.0
Seq 3 300 352 x 288 14358 2023.0 8.7 3.5 2.8 2.3
Seq 4 541 352 x240 33349 >2100.0 12.7 4.8 44 3.2
Seq 5 528 1280 x 720 115174 >2100.0 13.7 6.7 5.1 3.9
Seq 6 529 1280 x 720 188282 >2100.0 13.8 6.7 5.1 3.9

Table 1: Performance of the temporal transformation by using different technologies

=u+ § (x+b(v+dy)+ail(wz”—l+b(v+dy)) + 10

s=1 r#0
:u+c{x+b(v+dy)+ ail(WQV_l +b(v+dy))}+10
r+0

To predict the execution time of the BSDtoBin tool, we
must evaluate the above model. The parameters can be
filled in once we know the sequence and the variables are
constant values for every terminal. To obtain these
values, we determine the constants during the installation
phase of the software by using specific formulated
descriptions, for example a description with only motion
vector information.

4. ADAPTATION PROCESS

The goal of BSDL is to generate adapted bitstreams
without manipulating the bits of the bitstream themselves.
Every bitstream is embedded temporal, spatial and quality
scalable. These kinds of scalability must be exploited in
the XML domain by simple editing operations.

The first type of scalability is a temporal reduction
by a power of two. To obtain that kind of adapted
descriptions, we must eliminate the highest content levels
of each GOP in Figure 2. The second transformation
executes the spatial transformation. Therefore, we must
delete the highest subbands of each content level. Finally,
the SNR scalability cannot be performed by using the
information contained in the bitstream, as we can see in
Figure 2. During the SNR transformation, we must
truncate every subband in such a manner that we respect
the given global bit rate and that the quality is constant
and as high as possible. We need information about the
composition of the different subbands, in particular the
number and the length of the different bit planes that a
subband contains. The extra information about the bit
planes is the encapsulated metadata as used in section 3.
Based on general metadata (contained in the header tag),
we can calculate the bit plane where we must truncate the
subbands. Once we know this bit plane, we need the
subband-specific metadata (contained in the subband tags

of Figure 2) to know the length of the bit plane in the
current subband and where to prune the subband.

How to implement these transformations is not
standardized in the MPEG-21 DIA standard. The decision
lies in the hands of the adaptation engine implementer.
We have compared different possible technologies qua
performance in execution time and memory consumption.
We have implemented the different transformations in
XSLT, Java and C++ by using a DOM and SAX library.

To perform the measurements, we have run every
transformation in every technology 5 times and calculated
the average over the 5 runs. The measurements were done
on a PC having an Intel Pentium IV CPU, clocked at
2.8GHz with Hyper-Threading and having 1GB of RAM
at its disposal. The used operating system was Windows
XP Pro (service pack 2) and Sun Microsystems's Java 2
Runtime Environment (Standard Edition version
1.4.2_04) was running as JVM.

5. EXPERIMENTAL RESULTS

First, we discuss the performance of the transformation
implementations. We could give an overview for the three
scalabilities, but in this paper, we only discuss the
temporal transformation by a reduction of two temporal
levels. The same conclusions of analysis can be
conducted for the other transformations. In Table 1, we
give an overview of the measurements for different
sequences and implementations. We have selected six
sequences with different lengths and resolutions as
reflected in the table. During the encode phase, we have
used GOP structures of 16 frames. In this table, we see
that XSLT is completely unusable as transformation
engine in the context of bitstream description adaptation.
The difference between a Java and C++ implementation
by using a DOM library is significant; the origin of the
difference lies in the fact that Java needs more time to
construct the internal DOM tree in memory and to
serialize the tree to a file. The transformation of the
(internal) tree is equally fast in both situations. Finally,
we see that the difference between the SAX
implementation in Java and C++ is smaller than in case of
the DOM implementation.

Sequence Size Bitstream 1* run (s) 2™ run

(KB) Parsing time (s) I/0O time (s) Total time (s)
Seq 1 2425 0.70 0.25 0.03 0.28
Seq 2 6474 1.36 0.87 0.02 0.89
Seq 3 14358 2.53 1.97 0.03 2.00
Seq 4 33349 3.67 2.74 0.26 3.00
Seq 5 115174 6.93 3.00 3.45 6.45
Seq 6 188282 10.28 3.09 6.71 9.80
Seq 6 after 67675 5.03 1.89 2.58 4.47
temporal reduction

Table 2: Performance of the BSDtoBin tool

Another measurement is the memory consumption
during the transformation. =~ For =~ DOM-based
implementations, we need 180MB for the last three
sequences and only 2MB for the SAX-based approach.
The longer the sequence, the more memory we need for
the construction of the internal DOM tree. In contrast
with SAX, where we always need 2 MB independent of
the length of the sequence. Therefore, we can conclude
that a SAX-based implementation is the only usable
technique for a description transformation when the
sequences are considerably long.

Secondly, we have measured the performance of the
BSDtoBin tool. During the execution of the application,
we noticed that the time that was spent on I/O was
significant. Therefore, we have calculated the time that
was spent on parsing and on I/O by using our model of
section 3. For each tested description, we have executed
two runs immediately after each other without closing the
application. The results of the second run are the most
important because the JIT-compiler of JVM has done his
work and all the classes are loaded in the memory. In a
use case, the BSDtoBin application on a server will never
close and will be waiting on new requests while the
(compiled) classes are still in the memory.

In table 2, we see the results of the BSDtoBin tool
during the 1st and 2nd run. The difference between the
two execution times is in all situations approximately 0.5s
(the time to load and compile most classes and to
construct an internal DOM tree of the BSDL schema).
Further in the table, we see that the time spent on 1/O is
high for the high definition sequences. Finally, we have
measured the execution time of a transformed description
because these descriptions will be used in a real use case.

When we combine the results from table 1 and table
2, we see that the transformation of the description and
generation of the adapted bitstream is possible in real
time. So, we can use BSDL in streaming use cases.

6. CONCLUSIONS

In this paper, we have discussed how we can adapt
scalable bitstreams by using XML descriptions. To realize

this aim, we have used the MPEG-21 BSDL standard.
The adaptation step in the XML domain is a
transformation of an XML document. We have seen that
the usage of a SAX parser is the only acceptable solution
for the transformation of a bitstream description. To
handle multiple requests, we must know the execution
time of the bitstream generator (BSDtoBin). Therefore,
we have formulated a mathematical model and by using
this model, we have seen that the generation of a new
bitstream can be done in real time.

7. ACKNOWLEDGMENTS

The research activities that have been described in this
paper were funded by Ghent University, the
Interdisciplinary Institute for Broadband Technology
(IBBT), the Institute for the Promotion of Innovation by
Science and Technology in Flanders (IWT), the Fund for
Scientific Research-Flanders (FWO-Flanders), the
Belgian Federal Office for Scientific, Technical and
Cultural Affairs (OSTC), and the European Union.

8. REFERENCES

[1] A.Vetro, C. Christopoulos, T. Ebrahimi “Universal
Multimedia Access”, IEEE Signal Processing magazine,
20 (2) 16-16, March 2003

[2] P.Chen, J.W. Woods, “Fully Scalable Subband /
Wavelet Coding”,Rensselaer Polytechnic Institute, Troy
New York, May 2003

[3] Moving Picture Experts Group, “Text of ISO/IEC
21000-7 FCD — Part 7: Digital Item Adaptation,”
ISO/IEC JTC1/SC29/WG11 N5845, July 2003

[4] 1. Burnett, R. Van de Walle, K. Hill, J. Bormans, and
F. Pereira “MPEG-21: Goals and Achievements”, IEEE
Multimedia, IEEE Computer Society, pp. 60-70, 2003

[5] Myriam Amielh, Sylvain Devillers, “Bitstream
Syntax Description Language: Application of XML-
Schema to Multimedia Content Adaptation,” WWW2002,
May 2002

	Index
	Conference Info
	Welcome Message
	Venue
	Sponsors
	Committees

	Sessions
	Wednesday, 13 April, 2005
	WedAmOR1-Special Session on Video Surveillance I
	WedAmOR2-Special Session on Semantic Multimodal Analysi ...
	WedAmOR3-Special Session on Video Surveillance II
	WedAmOR4-Special Session on Semantic Multimodal Analysi ...
	WedPmOR1-Special Session on Semantic Multimedia Analysi ...
	WedPmOR2-Face Detection and Recognition I
	WedPmOR3-Special Session on Semantic Multimedia Analysi ...
	WedPmPO1-Posters I

	Thursday, 14 April, 2005
	ThuAmOR1-Video Coding and Transmission
	ThuAmOR2-Audio-Visual Processing
	ThuAmOR3-Special Session on Mixed and Augmented Reality
	ThuAmOR4-Special Session on Real-Time Object Tracking: ...
	ThuPmOR1-Special Session on Universal Multimedia Access ...
	ThuPmOR2-Special Session on Media Security
	ThuPmPO1-Posters II
	ThuPmOR3-Face Detection and Recognition II

	Friday, 15 April, 2005
	FriAmOR1-Search and Retrieval
	FriAmOR2-Analysis and Classification I
	FriAmOR3-Special Session on Personalised Knowledge Syst ...
	FriAmOR4-Watermarking
	FriPmOR1-Special Session on 3D Reconstruction and Rende ...
	FriPmOR2-Analysis and Classification II
	FriPmOR3-Special Session on 3D Reconstruction and Rende ...
	FriPmPO1-Posters III

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	Ó
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	Multimedia content analysis and understanding
	Content generation and manipulation
	Content-based browsing, indexing and retrieval of image ...
	2D/3D feature extraction
	Advanced descriptors and similarity metrics for audio a ...
	Relevance feedback and learning systems
	Supervised and unsupervised segmentation of objects in ...
	Identification and tracking of regions in scenes
	Voice/audio assisted video segmentation
	Analysis for coding efficiency and increased error resi ...
	Analysis and understanding tools for content adaptation
	Multimedia content adaptation tools, transcodingand tra ...
	Content summarization and personalization strategies
	Data hiding and copyright protection of multimedia cont ...
	Semantic mapping and ontologies
	Multimedia analysis for advanced applications
	Multimedia analysis for surveillance, broadcasting, mob ...
	Knowledge-Assisted Multimedia Analysis
	Semantic Web and Multimedia

	Search
	Help
	Browsing The Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations And Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Rik Van de Walle
	Wim Van Lancker
	Davy De Schrijver

